第二百零三章 解决等谱非等距同构猜想

这是解决等谱问题的关键,但它在特征值的计算方面无法构建出的稳定的闭willmore超曲面,也无法计算出常平均曲率。

这一度让他苦恼不已。

幸运的是,通过针对等谱问题与偏微分方程相关文献方面的搜索浏览,他找到了一个适合的补救办法。

保hamilton系统辛结构的辛几何算法、保李群微分方程的李群方法。

这章没有结束,请点击下一页继续阅读!

这两种于上个世纪日不落国数学家提出的算法,能长时间精确模拟微分方程的变化,且能近似保持微分方程动量和能量守恒特性。

而这两个特性刚好可以应用到他的数学计算中,能恰到好处的填补上最后一块漏洞,让他完成最后的构建。

......

盯着稿纸上的答桉,徐川脸上扬起了笑容。

他这边已经完成了自己的工作,不知道的费弗曼那边的进度怎么样了。

三个月的时间,哪怕是加上此前两人的共同合作时间,也只有四个多月。

四个月的时间,要解决一个世界级难题,即便是对于一名菲尔兹奖得主而言,难度也不小。

他能解决,依赖的是前世对分析学和拓扑学的研究,再加上这辈子解决的第一个数学难题就是等谱方向的,才有这么快的速度。

而费弗曼那边,就不清楚了。

不过想必他提出这份挑战,肯定是有些把握的。

毕竟费弗曼本身就是偏微分方程领域的顶级大牛,在光滑流形方面的研究也有独特之处。

另一方面,在经历了两个月的研究后,当他再看费弗曼此前的构思时,能敏锐的察觉到从狄利克雷函数和非线性偏微分方程出发解决等谱问题,比他提出的从拉普拉斯算子出发要容易不少。

这不仅仅是科研直觉,更是来源于他这段时间对等谱问题的研究。

毕竟在解决了等谱非等距同构猜想后,他对于这个问题的了解比此前更深。

而对于能解决这个问题的其他方法,也有了一些朦胧的推测。

这也让徐川有些感叹,即便是他已经解决了一个七大千禧年难题,对于数学领域的了解,依旧比不上这些沉浸数学研究几十年的顶级大牛。

他和这些专职于数学研究顶级数学家,还是有一定的差距的。

不过这个差距,正在随着他年龄的增长,对于数学知识的吸收而逐渐缩小。

......

从别墅中出来,徐川并没有去打扰费弗曼,只是去他的办公室中看了一眼,见办公室里面没人后就回到了自己的办公室。

当看到他出现办公室门口的时候,正在里面学习的四名学生脸上不约而同的露出了惊讶的表情。

“教授,您回来了?”

“您已经解决了那个等谱问题吗?”

几名学生惊诧的问道。

徐川点了点头,道:“如果不出意外的话,应该是的。费弗曼教授这些天来过吗?”

闻言,四名学生均情不自禁的咽了口唾沫。

他们的这位的导师,是不是太变态了?

事实上,这些天在除了学习外,他们四人也一起尝试过对徐川和费弗曼教授研究的问题进行过一段时间的研究。

想看看集他们四人之力能不能解开这个难题。

或者说,想看看他们距离两位教授还有多远的距离。

这个提议是沙希·佩雷斯发起的,很快就赢得了其他三人的同意。

毕竟能来到普林斯顿,可以说四人都是学霸,心里自然有傲气。

三个臭皮匠还顶个诸葛亮呢,如果他们能解决这个问题,说不定导师和费弗曼教授能对他们刮目相看呢?

然后现实是残酷的。

即便是等谱问题是ns方程中的一小个分支问题,即便是费弗曼教授和他们导师的两条不同的解决思路都摆在他们面前,他们也无能为力。

别说解决这个等谱问题了,就是沿着两位教授的思路向前推进一步,集他们四人之力都做不到。

这次的尝试,让他们看清了人与人之间是有差距,不,有鸿沟的。

.....

从震惊中回过神来,罗杰·迪恩恭敬的回道:“费弗曼教授前些天来过一次,但您不在。”