第五百四十七章 重新定义航空与航天

对于等离子体湍流进行高密度压缩实验来说,温度越高,实验越难进行。

第一次的压缩实验,将腔室中的温度维持在三千万度就足够了。

而且温度越高,万一实验出现意外,等离子体爆发造成的破坏也就越大,所以实验温度不需要高。

伴随着温度的稳定,被束缚在磁场中的氦三与氢模拟等离子体如同一层薄如蝉翼的淡蓝色极光,在反应室内安静地流淌着。

而随着外场线圈的微调,原本稳定的约数磁场迅速展开了新一轮的变化。

如果有人能够用肉眼直视反应堆腔室中的场景,就能看到那一层薄如蝉翼的淡蓝色极光,正在伴随着外场线圈的调整而进行压缩。

而每压缩一分,那淡蓝色极光颜色便浓郁一分。

这是随着等离子体压缩的进行,其原子碰撞率和温度亦进一步的提升而反馈出来的表象。

【报告,原子碰撞率已抵达预期临界点的百分之七十五!】

伴随着时间的一点点流逝,在众人紧张而又期待的神色中,一道汇报声在总控制室中响起。

听到声音,梁曲迅速做出了反应,指挥着工作人员对聚变设备进行了调整,徐川亦跟着抬头看向了监控数据的大屏幕。

上面记录着华星聚变装置的实时数据,从数据来看,高温等离子体的压缩,快要到极限了。

对于等离子体湍流的控制来说,即便是使用了高温铜碳银复合超导材料,外场线圈的约束力,也是有限制的。

如果是大型的托卡马克聚变装置,还能通过混合型磁体来进行提升,但小型化的聚变堆,本身的体积就有限制,不可能应用混合型磁体来进行临界磁场的增强。

盯着屏幕上的数据,徐川深吸了口气。

今天的测试,到这里已经可以说是完满的结束了,剩下的,就看等离子体湍流进行高密度压缩的实验数据,是否足够支撑他的理论计算了!

小主,

.........

伴随着指令,首次进行试运行的华星聚变装置开始缓缓停止工作。

ICRF天线的功率降低,反应堆腔室中的等离子体温度也随着降低。

当氢氦这些模拟实验的粒子从等离子体态重新回归常态时,腔室中的偏滤器亦开始工作,将残留的原料排放出去。

与此同时,研究所的科研人员和工程师迅速展开了对聚变装置的检查,以及对实验数据的分析工作。

而徐川则借着这份时间,继续完善着完善着磁铁绕组和永磁体块的设计。

两天的时间,匆匆而过,在超算中心的辅助下,这次实验的数据终于完整的解析了出来。

........

“徐院士!仿星器运行的解析数据出来了!”

办公室外,未见其人,先闻其声,梁曲手中捏着一份打印好的资料满脸的兴奋和激动推开门。

听到这句话,徐川将手中的圆珠笔直接丢到了桌上,快速的站了起来:“情况如何?我看看!”