这个假设用物理语言来描述,就是——对于真空激发,一定存在一个强相互作用的“质量间隙“,即存在一个非零的最小能级(即不可能存在质量为0的粒子波)。
为什么已通过物理验证过,却依然称为“假设”?因为目前这个假设还无法数学语言来解释或者证明。未经过严谨的数学理论来验证,就无法从“假设”升级为“定理”。
秦克与宁青筠在这几个月来,也一直在持之以恒、不断地向着这个“质量间隙”问题发起挑战,为的就是将这个“假设”变成“定理”。
经过无数种方式方法的尝试,两人目前的思路是将德布罗意的“物质波”理论与“杨-米尔斯的质量间隙问题”深度结合起来,想通过加入与动量mv的并集,一并解释无质量粒子(如光子)和有质量粒子(如胶子)的存在性,进而从基本粒子的客观存在性逻辑进行突破。
这里的关键点之一就是研究出一个群论里的“并集公式”,只要证明这个“并集公式”的存在性,就能在此基础上不断推导出新的非阿贝尔群,从数学上解释无质量粒子与有质量粒子是如何产生关联,最终证明在杨-米尔斯理论中,存在一个质量最小且大于0的粒子波,也就从数学上证明了存在质量间隙。
这个已是两人反复研究后觉得可行性较高的方向了,但当中依然遇到重重困难。
其中最关键的一个就是并集公式的不确定性与非线性,总会随着无质量粒子与有质量粒子之间的“关系”变化而产生不可预知的“变化”,这与杨老先生提出来的“宇称不守恒”类似,在弱相互环境的条件下,θ粒子和τ粒子的运动规律会发生变化——这就像两个粒子在照镜子,但呈现出来的模样与本身却是不相同的。
这种无法预测的“变化”这让秦克和宁青筠都头疼不已,始终找不到合适的思路将这种“变化”用数学语言准确地描述出来。
但王衡老院士无意中提及的“微扰理论”,却给了秦克新的灵感,那就是引入一个新的变化的“常数”,来描述这个不可预知的“变化”。
“没错,这个思路应该行得通!”秦克越写越快,双眼里闪动着智慧的光芒,一行行复杂的数学算式勾勒出极具美感的轨迹,冲开困扰了人类数学史上几十年的浓厚迷雾,慢慢露出真理的身影。
“L=1/4FμνF^μν+1/2M^2B^μ+e^2νχB^μ+ΓψφB2^η^2-φ(iτ^μΔ0m)φ……”
“从上式可知,SU3群可耦合到式29中设定的复标量场φ,由此得出φ=ρe^iθ,并转换得出规范不变组合Bμ≡Aμ-(1/e)χω……”
“套用到式22的狄拉克拉格朗日函数中,假设增加一个涨落常数项M=ΥΤ,即可代入到式67中,解释自发的对称破缺……”
秦克越写越快,思维的火花在脑海中不断地迸现,灵感喷发。
量子色动力学,量子电动力学,甚至是标准粒子模型……秦克仿佛漫游在知识的海洋中,强大的愉悦与兴奋流遍全身,让他精神进入到极度亢奋之中。
一张张雪白的稿纸被写满后随手移到了旁边,不少都直接从书桌上掉落下来,秦克却丝毫没察觉。
他就像最强大的剑手,冲入敌阵中,全力刺倒一个个拦路的“难点”,而这些“难点”,任何一个都足以让普通的物理学家钻研一辈子也未必能解得开。
这几个月来与宁青筠共同进攻质量间隙问题的每一个点滴,每一分收获,都在这里化为了他前行的力量。
近了,越来越近了。
秦克已看到成功的曙光从一个小光点慢慢扩大为绚丽的光亮,隐藏在迷雾中的真理也显露出越来越多的真实面貌……
但质量间隙问题的难度实在太高,“灵感增幅状态”更是极耗心神,他额上早已布满了汗水,脸色也因为精神消耗过大,从原本的红润变得苍白,就像进行着一场马拉松比赛般。
秦克的神色却自始至终有如磐石般坚毅,他抿紧唇,尽可能地提高自己的书写速度。
这一刻他眼里心里除了这个“质量间隙”问题,再无他物。
不知过了多久,秦克的身体已因为过度疲惫开始不自觉地颤抖,汗水更是将他的衣衫湿透,使他就像从水里捞出来般,脸色更是苍白得吓人。